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Performance of Multi-Stratum Space-Time Coding for
𝑁𝑟 × 2 MIMO Channels

Elad Domanovitz and Uri Erez, Member, IEEE

Abstract—V-BLAST is a common architecture for transmitting
multiple coded data streams over a MIMO channel. A drawback
of V-BLAST, however, is that it offers little diversity. Multi-
stratum space-time coding has been proposed as a generalization
of V-BLAST, where the multiple transmitted data streams are
first separately modulated using an orthogonal space-time block
code and then are superimposed and transmitted over the
multiple antennas. In this work, the performance of multi-
stratum space-time coding for 𝑁𝑟×2 MIMO channels is analyzed,
where the two superimposed streams are Alamouti modulated
and coded at a rate optimized for the SNR. It is shown that the
scheme offers significant improvement in terms of diversity while
the encoding/decoding complexity remains essentially unchanged.

Index Terms—MIMO, Alamouti code, multi-stratum space-
time coding, fading, BLAST, diversity-multiplexing tradeoff.

I. INTRODUCTION

CONSIDER a single-user multiple-input multiple-output
(MIMO channel), where the transmitter and receiver are

equipped with 𝑁𝑡 and 𝑁𝑟 antennas, respectively. The channel
is given by,

𝒚 =
√
𝜌H𝒙+ 𝒏,

where H is an 𝑁𝑟 × 𝑁𝑡 matrix, 𝒙 is the 𝑁𝑡 × 1 input
vector and 𝒚 is the 𝑁𝑟 × 1 received vector. The transmitter is
subject to an average power constraint, 𝐸[∥𝒙∥2] ≤ 𝑁𝑡 where
𝜌 = SNR. We assume that the noise 𝒏 is i.i.d. circularly
symmetric complex Gaussian noise of unit power per antenna,
i.e., n ∼ 𝒞𝒩 (0, 𝐼𝑁𝑟×𝑁𝑟). Thus, SNR is the maximal allowed
average power per transmit antenna. We assume that the
channel matrix H is fully known to the receiver but is not
known to the transmitter (open loop). We further assume
a quasi-static Rayleigh fading model where the channel is
assumed constant throughout the duration of a codeword. The
mutual information of the MIMO channel (in bits per channel
use) for an i.i.d. Gaussian input is:

𝐼OPT(H) = log2
∣∣1 + 𝜌HH𝐻

∣∣ .
A well-known scheme that mainly focuses on maximizing

the spatial multiplexing gain is the vertical Bell Labs space-
time architecture (V-BLAST1). The input data is divided into
independent substreams, which are separately coded and trans-
mitted over different antennas. The receiver applies successive
interference cancelation (SIC).
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1This scheme is sometimes referred to as H-BLAST [4].

Multi-stratum space-time coding (MSSTC), introduced by
Wachsmann et al. in [1], may be viewed as an enhanced V-
BLAST-SIC scheme in which the data streams, after being
separately coded, are then modulated via an orthogonal space-
time block codes and then transmitted superimposed over
the multiple antennas, whereby diversity is gained while the
complexity remains essentially unchanged.

We analyze the performance of MSSTC for the case of a
𝑁𝑟 × 2 MIMO system where the code rates of the streams
are optimized as a function of the SNR. We use the diversity-
multiplexing tradeoff (DMT) framework, as defined in [2], as
a means to compare different schemes. Let 𝑅(𝜌) (bits/symbol)
be the rate of a code 𝐶(𝜌). A coding scheme 𝐶(𝜌) is said to
achieve spatial multiplexing gain 𝑟 and diversity gain 𝑑 if the
data rate satisfies lim𝜌→∞

𝑅(𝜌)
log 𝜌 = 𝑟 and the average error

probability decays as lim𝜌→∞
− log𝑃𝑒(𝜌)

log 𝜌 = 𝑑.

II. DMT OF ALAMOUTI MODULATION AND V-BLAST

We begin with recalling the DMT of Alamouti modulation
and V-BLAST which will play an important role in the sequel.

Using Alamouti modulation [3] for the case of two receive
antennas,1 denote 𝒚 =

[
𝑦1,1 𝑦∗1,2 𝑦2,1 𝑦∗2,2

]𝑇
where 𝑦𝑖,𝑗

is the symbol received at time 𝑗 in antenna 𝑖; 𝒙 =
[
𝑥1 𝑥2

]𝑇
;

𝒏 =
[
𝑛1,1 𝑛∗

1,2 𝑛2,1 𝑛∗
2,2

]𝑇
where 𝑛𝑖,𝑗 is the noise

sample at time 𝑗 in antenna 𝑖; and ℎ𝑖,𝑗 as the channel gain
between transmit antenna 𝑗 and receive antenna 𝑖.

With this notation, the received symbols can be written as

𝒚 =
√
𝜌Heq𝒙+ 𝒏

where

Heq =

[
ℎ1,1 −ℎ∗

1,2 ℎ2,1 −ℎ∗
2,2

ℎ1,2 ℎ∗
1,1 ℎ2,2 ℎ∗

2,1

]𝑇
.

Linear processing at the receiver yields the equivalent scalar
channel,

𝑦𝑖 =
√
𝜌 ⋅ ∥H∥F ⋅ 𝑥𝑖 + 𝑛𝑖, 𝑖 = 1, 2 ,

where F denotes Frobenius norm and where �̃� has the same
distribution as 𝑛. The DMT curve for Alamouti modulation,
depicted in Figure 1 (for a 2× 2 system) is given by [2]

𝑑(𝑟) = 4(1− 𝑟).

In [2], the DMT of several SIC decoding options for V-
BLAST is analyzed. We outline the DMT curve for three
variants of V-BLAST.

1For notational convenience, the results are stated for the case of two receive
antennas. The generalization to more receive antennas is straightforward.
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Fig. 1. Diversity-multiplexing tradeoff curves for 2× 2 MIMO channel.

∙ “V-BLAST 1” - Allocate the same rate to both antennas,
and arbitrarily decide on the order of decoding. The DMT
curve of this scheme (for a square system with 𝑁𝑡 =
𝑁𝑟 = 𝑛) [2] is 𝑑(𝑟) = (1− 𝑟/𝑛)+.

∙ “V-BLAST 2” - It is shown in [2] that when the same
data rate is sent over the antennas, the optimal decoding
order is to choose the substream in each stage such that
the SNR at the output of the corresponding decorrelator
is maximized. The DMT curve of this scheme is upper
bounded in [2] by 𝑑(𝑟) < (𝑛− 1)(1− 𝑟/𝑛).

∙ “V-BLAST 3” - Fix the detection order but assign differ-
ent rates to different substreams. For the 2x2 case, the
optimal rate allocation is described as follows:

– For 𝑟 ≤ 1
2 , only one substream is used. i.e., 𝑟2 = 𝑟

and 𝑟1 = 0. The DMT curve is thus 2(1− 𝑟).
– For 𝑟 > 1

2 , two substreams are used where 𝑟2 =
1
2 +

1
3

(
𝑟 − 1

2

)
and 𝑟1 = 2

3

(
𝑟 − 1

2

)
. The DMT curve

is 1 + 2
3

(
1
2 − 𝑟

)
.

We also define another V-BLAST variant which will be used
for analysis of the proposed scheme. We analyze a scheme that
decodes the worst antenna first. We denote this scheme by “V-
BLAST 4” and in the sequel we prove that the DMT of this
scheme is the same as for “V-BLAST 1”.

III. MSSTC WITH OPTIMIZED RATE ALLOCATION

We now consider MSSTC with SIC being employed. It will
be shown that the DMT curve of MSSTC-SIC is as depicted
in Figure 1. For the case of two transmit antennas, MSSTC
modulation is based on using two (different) embodiments of
Alamouti modulation, and is described by

X̃ =
√
𝑃1

[
𝑥1 −𝑥∗

2

𝑥2 𝑥∗
1

]
+
√
𝑃2

[
𝑥3 𝑥∗

4

𝑥4 −𝑥∗
3

]
, (1)

where each layer is coded with rate 𝑅𝑖 (and power 𝑃𝑖). We
also note that 𝑃1+𝑃2 = 𝜌, where for the moment we assume
that 𝑃1 = 𝑃2 = 𝜌

2 . Using the notation of Section II for 𝒚 and

𝒏 and denoting 𝒙 =
[
𝑥1 𝑥2 𝑥3 𝑥4

]𝑇
we have

𝒚 =

√
𝜌

2
HMSSTC ⋅ 𝒙+ 𝒏,

where

HMSSTC =

⎡
⎢⎢⎣
ℎ1 ℎ2 ℎ1 ℎ2

ℎ∗
2 −ℎ∗

1 −ℎ∗
2 ℎ∗

1

ℎ3 ℎ4 ℎ3 ℎ4

ℎ∗
4 −ℎ∗

3 −ℎ∗
4 ℎ∗

3

⎤
⎥⎥⎦ .

The resulting mutual information is

𝐼OPT (HMSSTC) =
1

2
log2

∣∣∣1 + 𝜌

2
HMSSTCH

𝐻
MSSTC

∣∣∣ .
IV. DMT OF MSSTC-SIC

We first compare the diversity of layer 2 in MSSTC with
that of layer 2 (i.e., the stream transmitted over antenna 2) in
“V-BLAST 3”. For a 2×2 system, the channel matrix is given
by

H2×2 =

[
ℎ1 ℎ2

ℎ3 ℎ4

]
.

For “V-BLAST 3”, assuming correct SIC of antenna (layer)
1, the mutual information of antenna (layer) 2 is given by

𝐶Ant2(𝜌) = log2
(
1 + 𝜌(∣ℎ2∣2 + ∣ℎ4∣2)

)
.

According to [2], the outage probability for antenna 2 satisfies
𝑃

(2)
𝑒 (𝜌)

.
= 𝜌−2(1−𝑟2) and thus 𝑑Ant2(𝑟2) = 2(1− 𝑟2).

Assuming correct decoding of layer 1 in MSSTC, the
mutual information of layer 2 can be written as

𝐶Lay2(𝜌) = log2

(
1 +

𝜌

2

4∑
𝑖=1

∣ℎ𝑖∣2
)
.

Since the modulation scheme of layer 2 is orthogonal, ac-
cording to [2], the DMT curve of this layer is 𝑑Lay2(𝑟Lay2) =
4(1 − 𝑟Lay2), which is significantly superior to the diversity
of antenna 2 in “V-BLAST 3”.

We now show that the diversity of layer 1 in MSSTC is
the same as that of antenna 1 in “V-BLAST 3”. Since SIC is
information-lossless in Gaussian channels (see, e.g., [5]), the
explicit expression for the mutual information of antenna 1 in
“V-BLAST 3” is,

𝐶Ant1(𝜌) = 𝐼OPT (H2×2)− 𝐶Ant2(𝜌)

= log2

⎛
⎜⎜⎜⎜⎝
1 + 𝜌2 ∣ℎ1ℎ4 − ℎ2ℎ3∣2 + 𝜌

4∑
𝑖=1

∣ℎ𝑖∣2

1 + 𝜌(∣ℎ2∣2 + ∣ℎ4∣2)

⎞
⎟⎟⎟⎟⎠ .

The outage probability of antenna 1 in “V-BLAST 3” satisfies
[2] 𝑃 (1)

𝑒 (𝜌)
.
= 𝜌−(1−𝑟1) and thus 𝑑Ant1(𝑟1) = 1− 𝑟1.

Explicitly writing the overall mutual information of MSSTC
reveals that 𝐼OPT (HMSSTC) = 𝐼OPT (H2×2), i.e., there is no
loss in overall capacity due to using MSSTC for the case of
two transmit antennas. The explicit expression for the mutual
information of layer 1 in MSSTC is therefore,

𝐶Lay1(𝜌) = 𝐼OPT (H2×2)− 𝐶Lay2(𝜌)

= log2

⎛
⎜⎜⎜⎜⎝
1 + 𝜌2 ∣ℎ1ℎ4 − ℎ2ℎ3∣2 + 𝜌

4∑
𝑖=1

∣ℎ𝑖∣2

1 + 𝜌
2

4∑
𝑖=1

∣ℎ𝑖∣2

⎞
⎟⎟⎟⎟⎠ .
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We next show that the diversity of layer 1 in MSSTC is
equal to that of antenna 1 in “V-BLAST 3”. We do so by
showing that both are equal in turn to the diversity of antenna
1 in “V-BLAST 4”.

Define 𝑃Arbitrary
out as the outage probability of the first

antenna in “V-BLAST 1”, 𝑃Best
out as the outage probability of

the first antenna in “V-BLAST 2” and 𝑃Worst
out as the outage

probability of the first antenna in “V-BLAST 4”.
Since in “V-BLAST 1” the decoding order is chosen a

priori, it follows from symmetry that the best and worst
antenna are the first to be decoded with equal probability.
Thus,

𝑃Arbitrary
out =

1

2
𝑃Best

out +
1

2
𝑃Worst

out

which in turn implies that,

𝑃Worst
out ≤̇ 2𝑃Arbitrary

out
.
= 𝑃Arbitrary

out .

Hence, the diversity of “V-BLAST 4” is the same as that of
“V-BLAST 1” which in turn is given by 1− 𝑟/2.

Since in “V-BLAST 1” the DMT curve is dominated by
that of antenna 1 and since the same rate is allocated to both
antennas/layers, it follows that the DMT curve of the first
antenna/layer is 𝑑V−BLAST 1(𝑟) = 1 − 𝑟/2 or equivalently
1 − 𝑟1. This is turn is equal to the DMT curve of the first
antenna/layer in “V-BLAST 3”.

We proceed to show that the same is true for layer 1 in
MSSTC. We have,

𝐶Lay1 ≥ log2

⎛
⎜⎜⎜⎜⎝

1 + 𝜌2 ∣ℎ1ℎ4 − ℎ2ℎ3∣2 + 𝜌
4∑

𝑖=1

∣ℎ𝑖∣2

1 + 𝜌max(∣ℎ1∣2 + ∣ℎ3∣2, ∣ℎ2∣2 + ∣ℎ4∣2)

⎞
⎟⎟⎟⎟⎠

The r.h.s. of the inequality above is 𝐶Worst
Ant1 and thus

𝑃Lay1,MSSTC
out < 𝑃Worst

out
.
= SNR−(1−𝑟1).

Hence 𝑑Lay1(𝑟1) = 1− 𝑟1.
Now, using the argument used in [2] for expressing the

DMT for V-BLAST 3 with replacing 𝑑Ant2(𝑟2) = 2(1 − 𝑟2)
with 𝑑Lay2(𝑟2) = 4(1− 𝑟2) we get:

𝑑(𝑟) = max
𝑟1,𝑟2

[
min
𝑖:𝑟𝑖>0

(1− 𝑟1), 4(1− 𝑟2)

]

∙ For 𝑟 ≤ 3
4 , only one layer is used, i.e., 𝑟2 = 𝑟 and 𝑟1 = 0.

The tradeoff curve is thus 4(1− 𝑟).
∙ For 𝑟 > 3

4 , the rates of the layer are chosen to equalize
the diversity. The tradeoff curve is thus 8

5 − 4
5𝑟.

The resulting DMT curve is plotted in Figure 1. We observe
that the latter is superior to the DMT of all three variants of
V-BLAST. We also compare the outage capacities of all V-
BLAST variants and MSSTC at 1% outage probability, as
depicted in Figure 2.

V. MSSTC WITH EQUAL RATES

Thus far, we considered equal power allocation for the
two layers while using different rates. Nonetheless, it is often
desirable to allocate the same rate per antenna/layer so that a
single code (encoder/decoder) can be used [4]. An advantage
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Fig. 2. 1% outage performance - 2× 2 different rate per layer.
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Fig. 3. 1% outage performance - 2× 2 with same rate per layer.

of MSSTC is that since the streams correspond to layers rather
than different antennas, the power allocation can be freely
chosen. Figure 3 depicts the outage capacity of MSSTC with
equal rates. The power allocation as a function of SNR was
numerically optimized.
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